The

Complete
Reference

C-Style Console 1/0

1838 C++: The Complete Reference

is the object-oriented /0 system defined by C++. This and the next chapter

discuss the C-like /O system. (Part Two examines C++ 1/0.) While you
will probably want to use the C++ 1/O system for most new projects, C-style 1/0
is still quite common, and knowledge of its features is fundamental to a complete
understanding of C++.

In C, input and output are accomplished through library functions. There are both
console and file 1/0 functions. Technically, there is little distinction between console
1/0 and file 1/0, but conceptually they are in very different worlds. This chapter
examines in detail the console I/O functions. The next chapter presents the file I/O
system and describes how the two systems relate.

With one exception, this chapter covers only console I/O functions defined by
Standard C++. Standard C++ does not define any functions that perform various
screen control operations (such as cursor positioning) or that display graphics,
because these operations vary widely between machines. Nor does it define any
functions that write to a window or dialog box under Windows. Instead, the console
1/0 functions perform only TTY-based output. However, most compilers include in
their libraries screen control and graphics functions that apply to the specific environment
in which the compiler is designed to run. And, of course, you may use C++ to write
Windows programs, but keep in mind that the C++ language does not directly define
functions that perform these tasks.

The Standard C 1/0 functions all use the header file stdio.h. C++ programs can
also use the C++-style header <cstdio>.

This chapter refers to the console I/O functions as performing input from the
keyboard and output to the screen. However, these functions actually have the
standard input and standard output of the system as the target and/or source of
their I/O operations. Furthermore, standard input and standard output may be
redirected to other devices. These concepts are covered in Chapter 9.

C ++ supports two complete I/O systems. The first it inherits from C. The second

___| An Important Application Note

Part One of this book uses the C-like 1/0 system because it is the only style of I/O
that is defined for the C subset of C++. As explained, C++ also defines its own
object-oriented 1/O system. For most C++ applications, you will want to use the
C++-specific 1/O system, not the C I/O system described in this chapter. However,
an understanding of C-based I/O is important for the following reasons:

B At some point in your career you may be called upon to write code that is
restricted to the C subset. In this case, you will need to use the C-like I/O
functions.

B For the foreseeable future, C and C++ will coexist. Also, many programs will be
hybrids of both C and C++ code. Further, it will be common for C programs to
be "upgraded” into C++ programs. Thus, knowledge of both the C and the C++

Chapter 8: C-Style Console 1/0

1/0 system will be necessary. For example, in order to change the C-style I/O
functions into their C++ object-oriented equivalents, you will need to know
how both the C and C++ 1/O systems operate.

B An understanding of the basic principles behind the C-like 1/O system is
crucial to an understanding of the C++ object-oriented I/O system. (Both
share the same general concepts.)

M [n certain situations (for example, in very short programs), it may be easier to
use C's non-object-oriented approach to I/O than it is to use the object-oriented
1/0 defined by C++.

In addition, there is an unwritten rule that any C++ programmer must also be a C
programmer. If you don't know how to use the C1/0 system, you will be limiting your
professional horizons.

Reading and Writing Characters

The simplest of the console I /O functions are getchar(), which reads a character from
the keyboard, and putchar(), which prints a character to the screen. The getchar()
function waits until a key is pressed and then returns its value. The key pressed is also
automatically echoed to the screen. The putchar() function writes a character to the
screen at the current cursor position. The prototypes for getchar() and putchar() are
shown here:

int getchar(void);
int putchar(int c);

As its prototype shows, the getchar() function is declared as returning an integer.
However, you can assign this value to i char variable, as is usually done, because the
character is contained in the low-order byte. (The high-order byte is normally zero.)
getchar() returns EOF if an error occurs.

In the case of putchar(), even though it is declared as taking an integer parameter,
you will generally call it using a character argument. Only the low-order byte of its
parameter is actually output to the screen. The putchar() function returns the character
written, or EOF if an error occurs. (The EOF macro is defined in stdio.h and is
generally equal to ~1.)

The following program illustrates getchar() and putchar(). It inputs characters
from the keyboard and displays them in reverse case—that is, it prints uppercase as
Jowercase and lowercase as uppercase To stop the program, enter a period.

#include <stdio.h>
#include <ctype.h>

190 C++: The Complete Reference

int main(void)
{

char ch;
printf ("Enter some text (type a period to quit).\n");:
do {

ch = getchar () ;

if(islower(ch)) ch = tcupper(ch);
else ch = tolower(ch);

putchar (ch) ;
} while (ch !'= '.");

return 0;

A Problem with getchar()

There are some potential problems with getchar(). Normally, getchar() is implemented
in such a way that it buffers input until ENTER is pressed. This is called line-buffered input;
you have to press ENTER before anything you typed is actually sent to your program.
Also, since getchar() inputs only one character each time it is called, line-buffering may
leave one or more characters waiting in the input queue, which is annoying in interactive
environments. Even though Standard C/C++ specify that getchar() can be implemented
as an interactive function, it seldom is. Therefore, if the preceding program did not
behave as you expected, you now know why.

Alternatives to getchar()

getchar() might not be implemented by your compiler in such a way that it is useful in
an interactive environment. If this is the case, you might want to use a different function
to read characters from the keyboard. Standard C++ does not define any function that is
guaranteed to provide interactive input, but virtually all C++ compilers do. Although
these functions are not defined by Standard C++, they are commonly used since getchar()
does not fill the needs of most programmers.

Two of the most common alternative functions, getch() and getche(), have these
prototypes:

int getch(void);
int getche(void);

Chapter 8: C-Style Console 1/0 191

For most compilers, the prototypes for these functions are found in the header file
conio.h. For some compilers, these functions have a leading underscore. For example,
in Microsoft's Visual C++, they are called _getch() and _getche().

The getch() function waits for a keypress, after which it returns immediately.
It does not echo the character to the screen. The getche() function is the same as
getch(), but the key is echoed. You will frequently see getche() or getch() used
instead of getchar() when a character needs to be read from the keyboard in an
interactive program. However, if your compiler does not support these alternative
functions, or if getchar() is implemented as an interactive function by your compiler,
you should substitute getchar() when necessary.

For example, the previous program is shown here using getch() instead of getchar():

#include <stdio.h>
#include <conio.h>
#include <ctype.h>

int main(void)
{

char ch;
printf ("Enter some text (type a period to quit).\n");
do {

ch = getch{();

if(islower (ch)) ch = toupper{ch);
else ch = tolower (ch);

putchar (ch) ;
} while (ch !'= ".");

return 0;

When you run this version of the program, each time you press a key, it is
immediately transmitted to the program and displayed in reverse case. Input is no
longer line-buffered. While the code in this book will not make further use of getch()
or getche(), they may be useful in the programs that you write.

‘Note l At the time of this writing, when using Microsoft's Visual C++ compiler, _getche() and
—_— _getch() are not compatible with the standard C/C++ input functions, such as scanf()
or gets(). Instead, you must use special versions of the standard functions, such as
cscanf() or cgets(). You will need to examine the Visual C++ documentation for details.

C++: The Complete Reference

Reading and Writing Strings
The next step up in console I/O, in terms of complexity and power, are the functions
gets() and puts(). They enable you to read and write strings of characters.

The gets() function reads a string of characters entered at the keyboard and
places them at the address pointed to by its argument. You may type characters at
the keyboard until you press ENTER. The carriage return does not become part of the
string; instead, a null terminator is placed at the end and gets() returns. In fact, you
cannot use gets() to return a carriage return (although getchar() can do so). You can
correct typing mistakes by using the backspace key before pressing ENTER. The
prototype for gets() is

char *gets(char *str);

where str is a character array that receives the characters input by the user. gets() also
returns str. The following program reads a string into the array str and prints its length:

#include <stdio.h>
#include <string.h>

int maini{void)
{
char str[(80];

gets(str);
printf ("Length is %d", strlen(str));

return 0;

}

You need to be careful when using gets() because it performs no boundary checks on the
array that is receiving input. Thus, it is possible for the user to enter more characters than
the array can hold. While gets() is fine for sample programs and simple utilities that
only you will use, you will want to avoid its use in commercial code. One alternative is
the fgets() function described in the next chapter, which allows you to prevent an
array overrun.

The puts() function writes its string argument to the screen followed by a newline.
Its prototype is:

int puts(const char *str);

puts() recognizes the same backslash codes as printf(), such as "\t' for tab. A call
to puts() requires far less overhead than the same call to printf() because puts()

Chapter 8: C-Style Console 1/0

can only output a string of characters—it cannot output numbers or do format
conversions. Therefore, puts() takes up less space and runs faster than printf(). For
this reason, the puts() function is often used when it is important to have highly
optimized code. The puts() function returns EOF if an error occurs. Otherwise, it
returns a nonnegative value. However, when writing to the console, you can usually
assume that no error will occur, so the return value of puts() is seldom monitored.
The following statement displays hello:

puts("hello");

Table 8-1 summarizes the basic console I/O functions.

The following program, a simple computerized dictionary, demonstrates several
of the basic console 1/0O functions. It prompts the user to enter a word and then
checks to see if the word matches one in its built-in database. If a match is found,
the program prints the word’'s meaning. Pay special attention to the indirection used
in this program. If you have any trouble understanding it, remember that the dic
array is an array of pointers to strings. Notice that the list must be terminated by
two nulls.

Function Operation

getchar() Reads a character from the keyboard;
waits for carriage return.

getche() Reads a character with echo; does not
wait for carriage return; not defined by
Standard C/C++, but a common extension.

getch() Reads a character without echo; does not
wait for carriage return; not defined by
Standard C/C++, but a common extension.

putchar() Writes a character to the screen.
gets() Reads a string from the keyboard.
puts() Writes a string to the screen.

Table 8-1. The Basic I/0 Functions

193

194 C++: The Complete Reference

/* A simple dictionary. */
#include <stdio.h>
#include <string.h>
#include <ctype.h>

/* list of words and meanings */
char *dic[][40] = {
"atlas", "A volume of maps.",
"car", "A motorized vehicle.",
"telephone", "A communication device.",
"airplane", "A flying machine.",
mw oww o /% pull terminate the list */
}i

int main(void)

{
char word[80], ch;
char **p;

do {
puts ("\nEnter word: ");
scanf ("%s", word);

p = (char **)dic;

/* find matching word and print its meaning */
do {
if (!strcmp (*p, word)) {
puts ("Meaning: ") ;
puts (* (p+1));
break;
}
if (!strcemp(*p, word)) break;
p =p + 2; /* advance through the list */
} while(*p);
if (1*p) puts("Word not in dictionary."}:
printf ("Another? (y/n): ");
scanf (" %c%*c", &ch);
} while(toupper (ch) != 'N');

return 0;

|

Chapter 8: C-Style Console 1/0

Formatted Console 1/0

The functions printf() and scanf() perform formatted output and input—that is, they
can read and write data in various formats that are under your control. The printf()
function writes data to the console. The scanf() function, its complement, reads data
from the keyboard. Both functions can operate on any of the built-in data types,
including characters, strings, and numbers.

printf()

The prototype for printf() is
int printf(const char *control_string, ...);

The printf() function returns the number of characters written or a negative value if an
etrror occurs.

The control_string consists of two types of items. The first type is composed of
characters that will be printed on the screen. The second type contains format specifiers
that define the way the subsequent arguments are displayed. A format specifier begins
with a percent sign and is followed by the format code. There must be exactly the same
number of arguments as there are format specifiers, and the format specifiers and the
arguments are matched in order from left to right. For example, this printf() call

printf ("I like %c%s", 'C', "++ very much!");
displays
T like C++ very much!

The printf() function accepts a wide variety of format specifiers, as shown in
Table 8-2.

Code Format
%c¢ Character
%d Signed decimal integers

Table 8-2. printf() Format Specifiers

195

A96 C++: The Complete Reference

Code Format

Yoi Signed decimal integers

%e Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

%f Decimal floating point

Y%og Uses %e or %f, whichever is shorter

%G Uses %E or %F, whichever is shorter

%0 Unsigned octal

Y%s String of characters

%u Unsigned decimal integers

Y%ox Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer

Y%n The associated argument must be a pointer to
an integer. This specifier causes the number of
characters written so far to be put into that integer.

%% Prints a % sign

Table 8-2. printf() Format Specifiers (continued)

Printing Characters

To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers

You may use either %d or %ti to indicate a signed decimal number. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned value, use %u.

The %f format specifier displays numbers in floating point.

Chapter 8: C-Style Console 1/0

The %e and %E specifiers tell printf() to display a double argument in scientific
notation. Numbers represented in scientific notation take this general form:

x.dddddE+/~yy

If you want to display the letter "E" in uppercase, use the %E format; otherwise use %e.

You can tell printf() to use either %f or %e by using the %g or %G format specifiers.
This causes printf() to select the format specifier that produces the shortest output.
Where applicable, use %G if you want "E" shown in uppercase; otherwise, use %g. The
following program demonstrates the effect of the %g format specifier:

#include <stdio.h>
int main(void)
{

double £;

for(f=1.0; f<1.0e+10; f=£*10)
printf("sg ", £f);

return 0;

It produces the following output.
1 10 100 1000 10000 100000 1e+006 1e+007 1e+008 le+009

You can display unsigned integers in octal or hexadecimal format using %o and
%x, respectively. Since the hexadecimal number system uses the letters A through F
to represent the numbers 10 through 15, you can display these letters in either upper-
or lowercase. For uppercase, use the %X format specifier; for lowercase, use %x, as
shown here:

#include <stdio.h>

int main(void)
{
unsigned num;

for (num=0; num<255; num++) {
printf("%o ", num);
printf ("%$x ", num);

197

198 C++: The Complete Reference

printf ("$X\n", num):;

return O;

Displaying an Address

If you wish to display an address, use %p. This format specifier causes printf() to
display a machine address in a format compatible with the type of addressing used
by the computer. The next program displays the address of sample:

#include <stdio.h>
int sample;

int main{void)

{

printf ("%p", &sample);

return 0;

The %n Specifier

The %n format specifier is different from the others. Instead of telling printf() to
display something, it causes printf() to load the variable pointed to by its corresponding
argument with a value equal to the number of characters that have been output. In other
words, the value that corresponds to the %n format specifier must be a pointer to a
variable. After the call to printf() has returned, this variable will hold the number of
characters output, up to the point at which the %n was encountered. Examine this
program to understand this somewhat unusual format code.

#include <stdio.h>

int main(void)
{

int count;

printf ("this%n is a test\n", &count);
printf ("%d", count);

Chapter 8: C-Style Console 1/0 2199

return 0;

This program displays this is a test followed by the number 4. The %n format specifier
is used primarily to enable your program to perform dynamic formatting.

Format Modifiers

Many format specifiers may take modifiers that alter their meaning slightly. For
example, you can specify a minimum field width, the number of decimal places, and
left justification. The format modifier goes between the percent sign and the format
code. These modifiers are discussed next.

The Minimum Field Width Specifier

An integer placed between the % sign and the format code acts as a minimum field width
specifier. This pads the output with spaces to ensure that it reaches a certain minimum
length. If the string or number is longer than that minimum, it will still be printed in
full. The default padding is done with spaces. If you wish to pad with 0's, place a0
before the field width specifier. For example, %05d will pad a number of less than five
digits with 0's so that its total length is five. The following program demonstrates the
minimum field width specifier:

$include <stdio.h>
int main(void)
{
double item;
item = 10.12304;
printf ("%$f\n", item);
printf ("%$10£f\n", item);

printf ("%012f\n", item);

return 0;

This program produces the following output:

10.123040
10.123040
00010.123040

200 C++: The Complete Reference

The minimum field width modifier is most commonly used to produce tables in which
the columns line up. For example, the next program produces a table of squares and
cubes for the numbers between 1 and 19:

#include <stdio.h>

int main(void)

{
int 1i;
/* display a table of sguares and cubes */
for(i=1; 1<20; i++)

printf ("%8d %8d %8d\n", i, i*i, i*i*i);

return O;

A sample of its output is shown here:

P

1 1 1
2 4 8
3 9 27
4 16 54
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
11 121 1331
12 144 1728
13 169 2197
14 196 2744
15 225 3375
16 256 4096
17 289 4913
18 324 5832
19 361 6859

The Precision Specifier

The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the
type of data it is applied to.

Chapter 8: C-Style Console i/0

When you apply the precision specifier to floating-point data using the %f, %e,
or %E specifiers, it determines the number of decimal places displayed. For example,
%10.4f displays a number at least ten characters wide with four decimal places.

When the precision specifier is applied to %g or %G, it specifies the number of
significant digits.

Applied to strings, the precision specifier specifies the maximum field length. For
example, %5.7s displays a string at least five and not exceeding seven characters long.
If the string is longer than the maximum field width, the end characters will be truncated.

When applied to integer types, the precision specifier determines the minimum
number of digits that will appear for each number. Leading zeros are added to achieve
the required number of digits.

The following program illustrates the precision specifier:

#include <stdio.h>

int main(void)

{
printf("%.4f\n", 123.1234567);
printf("%3.8d\n", 1000);

printf ("%10.15s\n", "This is a simple test.");

return O;

It produces the following output:

123.1235
00001000
This 1s a simpl

Justifying Output
By default, all output is right-justified. That is, it the field width is larger than the data
printed, the data will be placed on the right edge of the field. You can force output to
be left-justified by placing a minus sign directly after the %. For example, %-10.2f left-
justifies a floating-point number with two decimal places in a 10-character field.
The following program illustrates left justification:

#include <stdio.h>

int main(void)

{
printf("right-justified:%8d\n", 100);
printf("left-justified:%-8d\n", 100);

201

202

C++: The Complete Reference

N

return U;

~

Handling Other Data Types

There are two format modifiers that allow printf() to display short and long integers.
These modifiers may be applied to the d, i, 0, u, and x type specifiers. The 1 (el]) modifier
tells printf() that a long data type follows. For example, %ld means thata long intis to
be displayed. The h modifier instructs printf() to display a short integer. For instance,
%hu indicates that the data is of type short unsigned int.

The 1 and h modifiers can also be applied to the n specifier, to indicate that the
corresponding argument is a pointer to a long or short integer, respectively.

If your compiler fully complies with Standard C++, then you can use the 1 modifier
with the ¢ format to indicate a wide-character. You can also use the 1 modifier with the
s format to indicate a wide-character string.

The L modifier may prefix the floating-point specifiers e, f, and g, and indicates that
a long double follows.

The * and # Modifiers

The printf() function supports two additional modifiers to some of its format specifiers:
*and #.

Preceding g, G, f, E, or e specifiers with a # ensures that there will be a decimal point
even if there are no decimal digits. If you precede the x or X format specifier with a #,
the hexadecimal number will be printed with a Ox prefix. Preceding the o specifier with
causes the number to be printed with a leading zero. You cannot apply # to any other
format specifiers.

Instead of constants, the minimum field width and precision specifiers may be
provided by arguments to printf(). To accomplish this, use an * as a placeholder. When
the format string is scanned, printf() will match the * to an argument in the order in which
they occur. For example, in Figure 8-1, the minimum field width is 10, the precision is 4,
and the value to be displayed is 123.3.

N
i
prix'itf("“'},’l‘.**", l}), 4,123.3);

SE

Figure 8-1. How the * is matched to its value

Chapter 8: C-Style Console 1/0 203

The following program illustrates both # and *:

#include <stdio.h>

int main(void)

{
printf ("%$x %#x\n", 10, 10
printf{"%* *f*, 10, 4, 1

return 0;

__|'scanf()

scanf() is the general-purpose console input routine. It can read all the built-in data
types and automatically convert numbers into the proper internal format. 1t is much
like the reverse of printf(). The prototype for scanf() is

int scanf(const char *control_string, ...);

’

The scanf() function returns the number of data items successfully assigned a value. It
an error occurs, scanf() returns EOF. The control_string determines how values are read
into the variables pointed to in the argument list.

The control string consists of three classifications of characters:

M Format specifiers
B White-space characters
B Non-white-space chavacters

Let's take a look at each of these now.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list. Let's

look at some examples.

Inputting Numbers

To read an integer, use either the %d or %i specifier. To read a floating-point number
represented in either standard or scientific notation, use %e, %f, or %g.

You can use scanf() to read integers in either octal or hexadecimal form by using the
%0 and %x format commands, respectively. The %x may be in either upper- or lowercase.

204

C++: The Complete Reference

Code Meaning

Y%c Read a single character.

%d Read a decimal integer.

Yol Read an integer in either decimal, octal, or

hexadecimal format.

%e Read a floating-point number.

%f Read a floating-point number.

g Read a floating-point number.

%0 Read an octal number.

Yos Read a string.

YoX Read a hexadecimal number.

Y%p Read a pointer.

%n Receives an integer value equal to the number

of characters read so far.

Y%ou Read an unsigned decimal integer.
%[] Scan for a set of characters.
%% Read a percent sign.

Table 83. scanf() Format Specifiers

Either way, you may enter the letters "A” through "F" in either case when entering
hexadecimal numbers. The following program reads an octal and hexadecimal number:

#include <stdio.h>

int main(void)

.
1

int 1, 3;
scanf ("%0%x", &i, &3J);
printf("so %x", i, J3):

return J;

Chapter 8: C-Style Console I/0

The scanf() function stops reading a number when the first nonnumeric character is
encountered.

Inputting Unsigned Integers

To input an unsigned integer, use the %u format specifier. For example,

unsigned num;
scanf ("%u”, &num) ;

reads an unsigned number and puts its value into num.

Reading Individual Characters Using scanf()

As explained earlier in this chapter, vou can read individual characters using
getchar() or a derivative function. You can also use scanf() for this purpose if
vou use the %c format specifier. However, like most implementations of getchar(),
scanf() wil! generally line-buffer input when the %c specifier is used. This makes
it somewhat troublesome in an interactive environment.

Although spaces, tabs, and newlii »s are used as field separators when reading
other types of data, when reading a single character, white-space characters are read
like any other character. For example, with an input stream of "x y,” this code fragment

o

&a, &b, &c);

ov
o]

scanf ("%c%c

returns with the character x in a, a space in b, and the character y in c.

Reading Strings

The scanf() function can be used to read a string from the input stream using the %s
format specifier. Using %s causes scanf() to read characters until it encounters a
white-space character. The characters that are read are put into the character array
pointed to by the corresponding argument and the result is null terminated. As it
applies to scanf(), a white-space character is either a space, a newline, a tab, a vertical
tab, or a form feed. Unlike gets(), which reads a string until a carriage return is typed,
scanf() reads a string until the first white space is entered. This means that you cannot
use scanf() to read a string like "this is a test” because the first space terminates the
reading process. To see the effect of the %s specifier, try this program using the string
"hello there".

Ll finclude <stdio.h>

int main(void)

205

206 C++: The Complete Reference

char str[801};
printf ("Enter a string: ");
scanf ("%$s", str);

printf ("Here's your string: %s', str);

return 0;

The program responds with only the "hello” portion of the string.

Inputting an Address

To input a memory address, use the %p format specifier. This specifier causes scanf()
to read an address in the format defined by the architecture of the CPU. For example,
this program inputs an address and then displays what is at that memory address:

#include <stdio.h>

int main(void)

{
char *p;
printf ("Enter an address: ");
scanf ("%p", &p);

printf ("value at location %p is %c\n", p, *p);

return 0;

The %n Specifier

The %n specifier instructs scanf() to assign the number of characters read from the
input stream at the point at which the %n was encountered to the variable pointed
to by the corresponding argument.

Using a Scanset

The scanf() function supports a general-purpose format specifier called a scanset. A
scanset defines a set of characters. When scanf() processes a scanset, it will input characters
as long as those characters are part of the set defined by the scanset. The characters read
will be assigned to the character array that is pointed to by the scanset’s corresponding

Chapter 8: (C-Style Console I/0

argument. You define a scanset by putting the characters to scan for inside square
brackets. The beginning square bracket must be prefixed by a percent sign. For
example, the following scanset tells scanf() to read only the characters X, Y, and Z.

When you use a scanset, scanf() continues to read characters, putting them into the
corresponding character array until it encounters a character that is not in the scanset.
Upon return from scanf(), this array will contain a null-terminated string that consists
of the characters that have been read. To see how this works, try this program:

#include <stdio.h>

int main(void)
I
8
int 1i;
char strf8C], str2l80

scanf ("%3d% labcdefygl%s",

&
printf{"sd %s %e". 1, str. stri

return 0;

Enter 123abedtye followed by ENTER. The program will then display 123 abced tye.
Because the "t" is not part of the scanset, scanf() stops reading characters into str
when it encounters the “t." The remaining characters are put into str2.

You can specify an inverted set if the first character in the set is a *. The ” instructs
scanf() to accept any character that is 110t defined by the scanset.

In most implementations you can specify a range using a hyphen. For example, this
tells scanf() to accept the characters A through Z:

% [A-Z1]

One important point to remember is that the scanset is case sensitive. If you want
to scan for both upper- and lowercase letters, you must specify them individually.

Discarding Unwanted White Space

A white-space character in the control string causes scanf() to skip over one or more
leading white-space characters in the input stream. A white-space character is either a

207

208

C++: The Complete Reference

space, a tab, vertical tab, form feed, or a newline. In essence, one white-space character
in the control string causes scanf() to read, but not store, any number (including zero)
of white-space characters up to the first non-white-space character.

Non-White-Space Characters in the Control String

A non-white-space character in the control string causes scanf() to read and discard
matching characters in the input stream. For example, "%d,%d" causes scanf() to read
an integer, read and discard a comma, and then read another integer. If the specified
character is not found, scanf() terminates. If you wish to read and discard a percent
sign, use %% in the control string.

You Must Pass scanf() Addresses

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers to the variables used as
arguments. Recall that this is one way of creating a call by reference, and it allows
a function to alter the contents of an argument. For example, to read an integer into
the variable count, you would use the following scanf() call:

Strings will be read into character arrays, and the array name, without any index, is
the acl.iress of the first element of the array. So, to read a string into the character array
str, you would use

scanf ("%s", str);

In this case, str is already a pointer and need not be preceded by the & operator.

Format Modifiers

As with printf(), scanf() allows a number of its format specifiers to be modified.

The format specifiers can include a maximum field length modifier. This is an
integer, placed between the % and the format specifier, that limits the number of
characters read for that field. For example, to read no more than 20 characters into
str, write

scanf ("%20s", str);

If the input stream is greater than 20 characters, a subsequent call to input begins
where this call leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Chapter 8: C-Style Console 1/0 209

as the response to the scanf() call in this example, only the first 20 characters, or up

to the "T," are placed into str because of the maximum field width specifier. This means
that the remaining characters, UVWXYZ, have not yet been used. If another scanf()
call is made, such as

oe

scanf ("%s", str);

the letters UVWXYZ are placed into str. Input for a field may terminate before the
maximum field length is reached if a white space is encountered. In this case, scanf()
moves on to the next field.

To read a long integer, put an I (¢ll) in front of the format specifier. To read a short
integer, put an h in front of the format specifier. These modifiers can be used with the
d,i, 0, u, x, and n format codes.

By default, the f, e, and g specifiers instruct scanf() to assign data to a float. If you
put an 1 (ell) in front of one of these specifiers, scanf() assigns the data to a double.
Using an L tells scanf() that the variable receiving the data is a long double.

Suppressing Input
You can tell scanf() to read a field but not assign it to any variable by preceding that
field's format code with an *. For example, given

E scanf ("$d%*c%d", &x, &y):

you could enter the coordinate pair 10,10. The comma would be correctly read, but not
assigned to anything. Assignment suppression is especially useful when you need to
process only a part of what is being entered.

